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LE'lTER TO THE EDITOR 

Conformal invariance and the regularised one-loop 
effective action 

Jeffrey Melmed 
Institute of Field Physics, Department of Physics and Astronomy, University of North 
Carolina, Chapel Hill, NC 27599-3255, USA 

Received 10 August 1988 

Abstract. A unique family 6,,-, of conformal invariants, polynomial in the extrinsic 
curvature of a hypersurface embedded in an n-dimensional Riemannian manifold M ,  is 
constructed. In the quantum theory of a conformally coupled scalar field on a manifold 
M with boundary aM, the counterterm that regularises the one-loop effective action contains 
members of G,,-, integrated over aM. The counterterms through n = 4 are given explicitly 
and a derivation of the n = 4 boundary contribution is given based on a flat-space result. 

In the quantum theory of a massless conformally coupled scalar field on a general 
curved Riemannian manifold M, it is well known that one counterterm is required to 
regularise the divergent one-loop bare effective action (Birrell and Davies 1982). When 
the manifold is compact the standard counterterm is given by the volume integral of 
a particular combination of Riemann curvature invariants, which in the limit as 
n + dim M (and only in the limit) becomes a global conformal invariant. This leads 
to the anomalous trace of the regularised effective stress-energy tensor. In the non- 
compact case the counterterm contains additional boundary integrals of invariants, 
depending on both the intrinsic and extrinsic curvature of the boundary surface. These, 
of course, do not affect the stress-energy tensor but do alter the value of the regularised 
effective action which is of considerable importance in obtaining the correct thermo- 
dynamics for closed systems. 

In this letter we introduce eHPl, a unique family of conformal invariants in n 
dimensions, constructed from the extrinsic curvature of an embedded ( n  - 1)- 
dimensional hypersurface. We construct from the known flat-space boundary contri- 
butions (Kennedy 1978), the full counterterm for a conformally coupled scalar field 
on a curved 4-manifold. Furthermore, we show how the boundary contributions for 
the three- and four-dimensional theories depend on e,,-, . Dirichlet boundary condi- 
tions are assumed. 

Given an n-dimensional manifold with boundary ( M ,  J M )  and a metric g a b ,  consider 
the scaling map or conformal transformation S,, : g a b  + c$4g,b.  When the manifold is a 
product 2n-l OB, and the metric is given by g a b  = + nanb, the map s,, induces the 
map S'inl_dyced: J y +  c$2'"-1'Jy; Pab  + c$-6Pab. In terms of the extrinsic curvature of the 
embedded hypersurface, Pab is its trace-free part: 
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It should be noted that .!?f!Yced # $-, since the induced map includes the scaling of 
n, while the other scales only the intrinsic metric Yob.  (This is an important distinction, 
especially for the initial-value problem of the gravitational field where is relevant 
(York 1972).) 

Under 3:!yced, a traced string of tensors Pab containing s terms scales by a factor 
of c$-". Consequently there exists a family en-, of conformally invariant scalar 
densities (of weight l ) ,  polynomial in pab, with members J y g n - l (  V, )  defined by 

( 1 )  

(2) 

gn-l( V, )  = n (P,1,2Pa2,)* . . P"",,) 

V ,  ={integers q > 1IC q = n - I}  

for n 3 2  
"3 

where i runs over the number of distinct such sets. For example, when n = 6 there are 
two sets: 

VI = { 5 }  + g5( V I )  = Tr Pa P Pa P . P (3a) 

and 

V, = {2,3} + g5( V,) = (Tr Pa P )  (Tr Pa Pa P ) .  ( 3 b )  

Each of these invariants can be written as polynomials of K ab and they are unique in 
that they are the only such polynomials of K ab  invariant under $?!Yced. 

As we have noted already, the regularised quantum theory of a massless conformally 
coupled scalar field on a general curved Riemannian manifold requires one counterterm 
in the one-loop effective action W. The counterterm has a simple pole at n = dim M 
and is proportional to the nth coefficient, Cn/2,  in an asymptotic expansion of the 
integrated heat kernel K ( T )  of the operator 0 - 5R where 5 = ( n  - 2)/4( n - 1 ) .  The 
regularised action is given by 

(4iT-"/ ' 
( n  -dim M )  cn" Wreg = w + 

where 

and the' asymptotic behaviour is given by (Greiner 1971) 

K (7) - (4TT)-"', C Ck/2Tk" as T J O .  
m 

k = O  

The coefficients c k / 2  are given by 

(4) 

where the U ~ / ~ ( X )  are the so-called 'Hamidew' functions (Gibbons 1982) of the Riemann 
curvature of the manifold (which vanish for k odd), and the b k / Z ( X )  are certain functions 
of the intrinsic and extrinsic curvature of the boundary. By zeta function techniques 
it can be shown that CnI2 is a conformal invariant in n dimensions (Dowker and 
Kennedy 1978). 
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From explicit calculations of Kennedy et a1 (1980) we have that 

c,=o n=O 

C1,2 = 0 
c - -2=  

1 -  3 x 2  

n = l  

n = 2  

C3,2=$( -8~ i2+3{JMd2ug2(V) )  n = 3  

where xn is the Euler-Poincark characteristic (EPC) of an n-dimensional manifold with 
boundary (i.e. including boundary terms), in-l is the EPC of the boundary manifold 
alone and g2( V) = Tr Pa P = Tr K K -$(Tr K)2.  Clearly C ,  and C3/2 are invariant 
under the maps s”, and i3, respectively. Using the conformal invariance of C2 when 
n =4, we can generalise a flat-space calculation of C2 given by Kennedy (1978): 

where 

f( K ) = 40 Tr K. K K - 33(Tr K ) (Tr K K ) + 5(Tr K )3. (10) 

When the manifold is curved, the volume part of C2 does not vanish since it comes 
from the integral of a2(x ) ,  which is a well known function of squared Riemann curvature 
terms. Therefore we may augment only the boundary integrand with terms that at 
least vanish when the Riemann tensor does, and which have dimensions of (length)-3. 
There are apparently six linearly independent scalars that meet those requirements 
and we denote them collectively by 

LR(a,) = a I R  Tr K +a2Rnbnanb Tr K +a3RabKab 

(Y4RacbdnCndKab + &5-EnR f a&(Rabnanb) (11) 

where -E, is the Lie derivative along the normal vector field of the boundary. The most 
general curved-space candidate is 

with 

H =  R abed Rahcd -2RahRRb+fR2=(Weyl)* 

and 

G = RabrdRobcd -4RabRRb + R2. 

The 0 R term that usually appears in the volume (as part of a 2 ( x ) )  has been integrated 
by Gauss’s law and absorbed into the cy5 term on the boundary. By redefining a , ,  a2, 
a3 and a4 and noting that 

f (K)=54g3(V)-42det3(K) (15) 

where 

g , ( V ) = T r P . P . P = T r K + K . K - ( T r K ) ( T r K . K ) + $ ( T r K ) 3  (16) 
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and 

1 
3! de t3 (K)=- (2TrK.K*K-3(Tr  K)(Tr K . K ) + ( T r K ) 3 )  (17) 

we can write 

C2=& ( - 3 2 ~ ’ ~ ~ + 3 { , d ~ V H - { ~ ~  d3c [yg3(V)+L, (a : ) ] )  (18) 

where x4 is the EPC of the 4-manifold with boundary. The first three parts of this are 
invariant under g4, either locally or globally. Furthermore it is straightforward to show 
that the only set of coefficients {a i }  which render the last term invariant (local or 
global) is the trival one { a :  = O}. Therefore we have the final result: 

Cz=& ( - 3 2 ~ ~ ~ 4 - t - 3  I, d 4 V H  -? I,, d3cg3(V)). (19) 

The technique we have employed has necessarily caused us to miss the explicit 
dependence of C2 on the coupling 6. We have used the conformal coupling throughout 
so that the expression in (19) is the limit as n + 4 of a general formula that depends 
on 6. There may, in fact, be other terms which have coefficient ((-i)K ( n  -4). 

Members of 6n-l appear in the boundary integral for the counterterms beginning 
with n = 3 where the first non-trivial one exists. When n = 3 and n = 4 there is a unique 
invariant comprising G2 and G3,  respectively, and each of these forms part of the 
counterterm for the corresponding effective action. For n 2 5 there are several members 
of Gn-l but we have not given here their explicit contribution to the counterterms. 
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